metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.020 wR factor = 0.051 Data-to-parameter ratio = 27.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethylenediammonium bis(dihydrogenarsenate): $R_4^3(14)$ loops built up from O—H···O hydrogen bonds

Received 20 February 2007 Accepted 21 February 2007

The title compound, $C_2H_{10}N_2^{2+}\cdot 2H_2AsO_4^{-}$, contains a network of centrosymmetric doubly protonated ethylenediammonium cations and dihydogenarsenate anions. The component species interact by way of cation-to-anion N– H···O and anion-to-anion O–H···O hydrogen bonds, the latter leading to infinite (001) sheets of the $(H_2AsO_4)^-$ anions containing unusual $R_4^3(14)$ loops.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the molecular salts of arsenic oxo-anions (Wilkinson & Harrison, 2007).

The tetrahedral $H_2AsO_4^-$ anion in (I) [mean As-O = 1.677 (2) Å] shows the usual distinction (Table 1) between protonated and unprotonated As-O bond lengths, the latter showing formal partial double-bond character. The $C_2H_{10}N_2^{2+}$ dication is centrosymmetric.

As well as Coulombic forces, the component species in (I) interact by way of a network of $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Table 2). The $H_2AsO_4^-$ units are linked into infinite (001) sheets (Fig. 2) via the $O-H\cdots O$ bonds. The $O2-H2\cdots O3^i$ bond (see Table 2 for symmetry codes) results in [100] chains of translation-related tetrahedra. These [100] chains are cross-linked by the $O1-H1\cdots O3^{ii}$ bond, to result in a square grid of tetrahedra. The intertetrahedral $As\cdots As^i$ and $As\cdots As^{ii}$ separations are 4.8971 (4) and 4.8081 (4) Å, respectively.

Figure 1

The structure of the ions of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius. The hydrogen bond is indicated by a double-dashed line. [Symmetry code: (v) 2 - x, -y, 1 - z.]

© 2007 International Union of Crystallography All rights reserved

Detail of a part of a (100) hydrogen-bonded sheet of $H_2AsO_4^-$ groups in (I), with hydrogen bonds indicated by double-dashed lines. [Symmetry codes as in Table 2; additionally, (vi) x, y + 1, z.]

Figure 3

The packing of (I), showing the (001) dihydrogenarsenate layers mediated by the organic cations, with hydrogen bonds indicated by double-dashed lines.

An unusual $R_4^3(14)$ supramolecular loop (Bernstein *et al.*, 1995) arises from this hydrogen-bonding network. As the graph-set symbol implies, this arrangement is 'unbalanced', with atom O3 accepting two hydrogen bonds and atom O4 none. However, atom O4 accepts two N-H···O bonds from the organic cation, compared with one such interaction for atom O3.

The anionic sheets are bridged by the ethylenediammonium cations, which participate in three $N-H\cdots O$ interactions from each of their $-NH_3^+$ groups to nearby dihydrogenarsenate tetrahedra. This results (Fig. 3) in alternating organic and inorganic layers with respect to the *c* unit-cell direction.

These simple molecular salts show remarkable diversity in their inter-anion $O-H\cdots O$ bonding arrangements. Other ammonium (di)hydrogenarsenates contain isolated pairs of tetrahedra (Todd & Harrison, 2005), single chains of anions (Wilkinson & Harrison, 2005*a*), double chains of anions (Wilkinson & Harrison, 2005*b*) or three-dimensional arrays (Wilkinson & Harrison, 2006). The sheet structure seen here is different from other layered arrangements seen previously (*e.g.* Wilkinson & Harrison, 2007).

Experimental

Aqueous ethylenediamine solution $(0.5 \ M, 10 \ ml)$ was added to aqueous H₃AsO₄ solution $(0.5 \ M, 10 \ ml)$, resulting in a clear solution. Colourless blades and plates of (I) grew as the water evaporated over the course of a few days.

Crystal data

$C_2H_{10}N_2^{2+}\cdot 2A_5H_2O_4^{-}$	V = 492.36 (5) Å ³
$M_r = 343.98$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
u = 4.8971 (3) Å	$\mu = 6.81 \text{ mm}^{-1}$
p = 8.8054 (5) Å	T = 293 (2) K
i = 11.4894 (6) Å	$0.41 \times 0.16 \times 0.05 \text{ mm}$
$B = 96.381 \ (1)^{\circ}$	

Data collection

F

Bruker SMART1000 CCD area-	5015 measured reflections
detector diffractometer	1783 independent reflections
Absorption correction: multi-scan	1525 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.020$
$T_{\min} = 0.166, \ T_{\max} = 0.726$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	66 parameters
$vR(F^2) = 0.051$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
783 reflections	$\Delta \rho_{\rm min} = -0.72 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

As1-O4	1.6372 (12)	As1-O2	1.7026 (13)
As1–O3	1.6532 (12)	As1-O1	1.7136 (13)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02-H2\cdots O3^{i}$ $01-H1\cdots O3^{ii}$ $N1-H5\cdots O4^{iii}$ $N1-H6\cdots O3$ $N1-H7\cdots O4^{iv}$	0.91 0.89 0.89 0.89 0.89 0.89	1.68 1.81 1.91 2.18 2.02	2.5810 (18) 2.689 (2) 2.7554 (19) 2.978 (2) 2.8783 (19)	168 171 158 149 162

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

O-bound H atoms were found in a difference map and refined as riding on their carrier O atoms in their as-found relative positions. C- and N-bonded H atoms were placed in idealized positions, with C-H = 0.97 Å and N-H = 0.89 Å, and refined as riding atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026-m2028.
- Wilkinson, H. S. & Harrison, W. T. A. (2005a). Acta Cryst. E61, m1228-m1230.
 Wilkinson, H. S. & Harrison, W. T. A. (2005b). Acta Cryst. E61, m1289-m1291
- Wilkinson, H. S. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1397m1399.
- Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m26-m28.